
Journal of Thermal Analysis, VoL 46 (1996) 1845-1864 

KINETIC ANALYSIS OF THERMOGRAVIMETRIC DATA 
XXIX. Remarks on the 'many curves' methods 

J. Zsak6 

Department of Physical Chemistry, "Babe~-Bolyai" University, 3400 Cluj, Romania 

(Received June 20, 1995) 

Abstract 

Four many curves methods, viz. calculation techniques based on Eqs (30), (31), (34) and 
(36), respectively, for deriving kinetic parameters from several TG curves recorded with differ- 
ent heating rates are tested on two sets of theoretical TG curves. The maximum reaction rate tem- 
perature and conversion, as well as the approximate formulae used for their calculation are 
discussed. Some aspects of the kinetic compensation effect are analysed. The f'mal conclusion is 
that the use of the many curves methods is not reasonable. 

Keywords: isokinetie relations, kinetic compensation effect, nonisothermal kinetics, thermo- 
gravimetry 

Introduction 

Generally in thermogravimetry (TG) 

A (solid) ---> B (solid) +C (gas) (:) 

type heterogeneous reactions are studied under non-isothermal conditions, by 
using a certain temperature program 

r--  q~t) (~) 

The kinetics of reaction (1) may be studied by using two types of approxima- 
tions, viz. model approximations and homogeneous formalism approximations. 
In the former case an attempt is made to derive kinetic equations by taking into 
account the nucleation, the growth of the germs, advance of the reaction inter- 
face, diffusion of the product etc. [1-7]. In the latter one the formalism of 
homogeneous kinetics is applied, by presuming that the reaction rate, defined 
by means of the conversion <z, might be given as the product of an apparent rate 
constant, depending on Tand of a certain conversion function, i.e. 
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~ t  = k(T/](~ (3) 

Concerning the temperature dependence of k, most frequently the validity of 
an Arrhenius type relation is presumed: 

k = Zexp {-E/RT} (4) 

and very often the conversion function is presumed to be that of an n-th order 
homogeneous reaction: 

J(o 0 = (1 - ct)" (5) 

By using a linear temperature program 

T = To + qt (6) 

i.e. a constant heating rate q, from relations (3)-(6) the following rate equation 
is obtained: 

dct Z 
dt - q 

- -  - - exp {-E/RT} (1 - cx)" (7) 

As shown [8-9], this equation is based upon several completely arbitrary hy- 
potheses, which cannot be justified from theoretical point of view and their use 
may be accepted only because the actual mechanism of reaction (1) is too com- 
plicated to be properly modelled. 

According to Eq. (7), from kinetic point of view reaction (1) may be char- 
acterized by means of three parameters, viz. Z, E and n, frequently called 
frequency or pre-exponential factor, activation energy and reaction order, re- 
spectively. A considerable number of calculation technique has been developed 
in order to derive these parameters from TG data. For this purpose Eq. (7), its 
derivative, or its integrated form are used and parameters are obtained by 
means of various linearization or curve fitting methods [9-11]. Obviously, the 
physical meaning of the kinetic parameters derived cannot be the same as in ho- 
mogeneous kinetics. Nevertheless, many authors believe that E means an 
activation energy, that Z is somehow correlated to the activation entropy of re- 
action (1) and many attempts are made to give the mechanism of the chemical 
reaction on the basis of the kinetic parameters derived from TG data. In our 
early papers [12] we also gave similar interpretations, but later we realized the 
erroneous character of these speculations. 

From mathematical point of view the above mentioned procedures mean the 
use of a variational method, by chosing a family of functions, containing 3 
variational parameters and by determining the parameter values ensuring the 
minimum deviation of experimental points from the theoretical curve. Conse- 
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quently, the so-called kinetic parameters Z ,  E and n have no clear physical 
meaning and they do not characterize the chemical reaction itself, but only the 
whole complexity of processes occurring during the pyrolysis under the given 
experimental conditions. Thus, kinetic parameters derived depend very much 
upon procedural variables as heating rate [13-21], sample weight [13, 22-26] 
etc. Generally, both Z and E values derived from TG curves decrease with in- 
creasing heating rate [13-22], but n values increase [19-22]. 

Although the apparent kinetic parameters do depend on the heating rate, 
there were developed a considerable number of methods [27-37], called by us 
'many curves' methods [9-10], using several TG curves recorded under differ- 
ent experimental conditions, mainly at different heating rates. Some of them are 
based on relations valid for a constant conversion value. These methods give 
different E values for different conversions, i.e. they seem to indicate a conver- 
sion dependence of the kinetic parameters. Since the basic relations of many 
such procedures [e.g. (27), (31), (32)] are obtained by presuming that E does 
not depend on ~z, a contradiction appears, which have been tried to be avoided 
[37]. 

In the present paper several many curves methods are analysed and tested on 
simulated "I'G curves. 

C o n s t r u c t i o n  of  theore t ica l  T G  curves 

The basic presumption of the majority of many curves methods is the inde- 
pendence of kinetic parameters from heating rate. This is why in series 1 of TG 
curves the same Z, E and n values have been used. In order to construct TG 
curves corresponding to different heating rates, the integrated form of Eq. (7) 
has been used, which may be written as [38]: 

ZE 
- p(x) (8) 

where g(r stands for the conversion integral, i.e. in the case of an n-th order 
reaction 

i d___~ _ I ~ n  [1 - ( 1 - c ~ )  I-"] i f n r  

g(cz) = o (I - co)* I-In(1 - or) i fn  = 1 

and p(x) means the exponential integral 

(9) 

X 

e-x 

oO 

with x = E/RT (1o) 
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In our procedure p(x) values have been calculated for different tx values, by 
means of Eq. (8). Tabulated exponential integrals [39] have been used to obtain 
the corresponding x value and eventually the temperature Thas been calculated 
accordingly to (10). 

In series 2 more 'real' TG curves have been constructed by taking into ac- 
count that integral methods, using Eq. (8), indicate a systematic decrease of Z 
and E, and increase of n with increasing heating rate, as mentioned above. 
Meanwhile, Z and E values obey a linear kinetic compensation law [20-22]: 

lgZ = a + bE (11) 

This indicates the existence of an isokinetic temperature 71, since if in the case 
of a series of pyrolysis processes there is a temperature T~ at which the rate con- 
stant exhibits the same value kl, Eq. (4) yields: 

1 
lgZ= lgki + 2.303RT~ E (12) 

From the experimentally found compensation parameters b we concluded that 
generally the isokinetic temperature is very close to To.l, i.e. to the temperature 
at which one has a=0.1  and the parameters a indicate lgki values close to -3 
[22-26, 40-44]. This is why in simulating TG curves of series 2 we took E val- 
ues decreasing with increasing q, n values increasing with increasing q and Z 
values have been calculated by means of Eq. (12) by taking lgki=-3 and 
7i=423 K, the latter one being equal to T0.1 in the series 1 for q= 10 K min -1. 

The kinetic parameters used for the construction of TG curves are collected 
in Table 1. The same table contains also the T0.1 values, as well as the conver- 

Table 1 Kinetic parameters and characteristics of the theoretical TG curves 

q/Kmin -I 

1 3 5 10 15 20 

E/kJ 1 120 120 120 120 120 120 

2 210 180 150 120 100 85 

lgZ i 12 12 12 12 12 12 

2 22.965 19.256 15.547 11.837 9.364 7.510 

n 1 1 1 1 1 1 1 

2 0.1 0.4 0.7 1.0 1.3 1.6 

To.~ 1 397.62 409.37 415.06 423.04 427.84 431.32 

2 413.26 419.20 422.47 427.47 431.98 436.13 

a4~ 1 0.655 0.297 O. 186 0.099 0.066 0.053 

2 0.402 0.166 0.108 0.071 0.052 0.040 
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Fig. 1 Theoretical TG curves of series 1. E=120 kJ, !gZ= 12, n=l .  q (in K rain-t): a - 1; 
b -  3; e - 5 ;  d - 10; e -  15; f-20 

sion values at the isokinetic temperature, i.e o~4~3. Theoretical TG curves of se- 
ries 1 and 2 are presented in Figs 1 and 2, respectively. 

T h e  m a x i m u m  o f  the reaction rate 

The temperature Tm and the conversion o~m corresponding to the maximum 
reaction rate are used to derive kinetic parameters from TG curves recorded 
with different heating rates. Obviously, under dynamic temperature conditions 
Tm and O~m correspond to the condition 

d2~ = 0 (13) 
d T  2 

By presuming that kinetic parameters Z, E and n are independent of q, but 
are functions of cz, derivation of Eq. (7) with respect to T and with the extre- 
mum condition (13), yields the following equation 

+ dI>l  n Om>IZ/+ 1 
m 
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where the lower index m of the derivatives indicates that their value corresponds 
to T=Tm and cz=am, respectively. 

0.8 

,~] 0.6 

0,4 

0.2 

400 450 
TIK 

500 

Fig. 2 Theoret ical  "I'G curves of  series 2. E, lgZ, n - see Table 1. q (K rain-I): a - 1; 
b - 3 ; c - 5 ; d - 1 0 ; e - 1 5 ; f - 2 0  

Since at the construction of both series of TG curves, 1 and 2, the kinetic 
parameters have been presumed not to vary with a,  in our case Eq. (14) be- 
comes 

E dl_d~ ) n _ n Z exp{-E/RTm}(1 - am) ~-~ (15) 
RT2 = m 1 - ~,~ -q 

This relation allows us to obtain both Tm and or=. For this purpose the left 
hand side and the right hand and side of the equation 

1 E nZ E (16) 
= lg--~- + (n - 1)lg(l - cz) - 2.303RT g~-~  

have been calculated for various ~ values. Their graphical plot vs. Tgave 7"= as 
the intersection of two curves. The cz, and T,  values obtained by means of this 
procedure are presented in Table 2. 
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Table 2 ct and T values corresponding to the maximum reaction rate 

q/K rain-I 

1 3 5 10 15 20 

~-m 1 0.612 0.611 0.611 0.610 0.610 0.610 

2 0.920 0.774 0.681 0.610 0.553 0.505 

Tm 1 421.73 434.92 441.33 450.33 455.76 459.69 

2 426.04 434.11 442.36 463.94 485.04 510.50 

For the calculation of an, several approaches have been proposed. These are 
based on approximate expressions for the exponential integral. Since the expo- 
nential integral cannot be solved exactly, many formulae have been proposed to 
approximate this integral [45-47]. Most of them are of the general form: 

p(x) = x-re-XQ(x) (17) 

where Q(x) stands for a series or for a rational expression, i.e. the ratio of two 
polynomials. In the case of the Schl6mlich expansion [48] one has r=  1 and 

1 1 1 . . . .  ( 1 8 )  
Q ( x )  = x + 1 - ( x  + 1)(x + 2) + (x + 1)(x + 2)(x + 3) 

The asymptotic expansion corresponds to r=2  and 

Q(x) 1 2! 3! 4[ (n + 1)! (19) 
= - - - + - - - - - + . . . + ( - 1 ) " x  x 2 x a x" + " "  

By introducing the expression (17) with r=2 into Eq. (8), one obtains [49]: 

E Z expI_E/RT}Q~, (20) 
RT 2 - q g(cz) 

For the maximum reaction rate, combination of Eqs (20) and (15) gives 

Q(xm) = n(1 - C~m)~lg(t~m) (21) 

By taking into account Eq. (9), one has: 

1 - o ~  = exp {-Q(xm)} i f n = l  

1 - otm=I1 + 
1 

Q(xm) n nQ(xm)]"- l ( 2 z )  
i f n ~  1 
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Let us consider the asymptotic expansion (19). It may be written as 

it (23) Q(x) = (-1)HAi(x) with Ai(x) - Xi_~ 
i---I 

This infinite series can be truncated after a certain number of terms. Let us de- 
note by Qn(x) the expression obtained with the first n terms, i.e. 

n 

Q.(x) = ~ (-1)i-lai(x) (24) 
i=1 

Qio(x) has been found to be a very good approximation ofp(x) if x>15 [50], but 
for small x values it may be even divergent [51]. 

As a matter of fact, (23) is always divergent. It is obvious that Ai(x) >A~+l(x) 
if i<x-1, but if i=x-1 

Ai(x) = ( x  - 1 ) !  and Ai+l(x) - x !  _ ( x  - 1 ) !  i . e .  A i ( x )  = Ai+l(x) 
XX-2 X• XX-2 

Let us denote x-1 =d. Thus, Ax-x(x)=Ax(X)=Ad(X) and the symbol d indicates 
that the series becomes divergent from this term on, since Ai(x)<Ai+t(x) if i>d. 

Due to the divergency of (19), the best approximation ofp(x) will be ob- 
tained with Qd(X) = Q,,-I(x), i.e. (17) becomes 

p(x) = x-2e -" Qd(X) (25) 

Since in (24) the sign of the terms alternates, it is obvious that the error of Qn(x) 
with respect to Qd(x) will be 

[Qa(x) - Q.(x)] < An(x) (26) 

if n<<d. With increasing x the Ad(X) value decreases very rapidly, as seen from 
Table 3. Frequently, this enables us to obtain good approximations of Qd(X) 
even by taking Qn(x) with n <d. In order to obtain a clear picture of this possi- 
bility, we calculated the x values for which A,(x), i.e. the maximum error of 
Qn(x), attains the following values: 10 -t, 10- s and 10 -5, respectively. These x 
values are given in Table 4 for small n values. From this table one can see e.g. 
that by taking the first 5 terms of (19), errors will be less then 0.1% if 
x>14.841. A more complete picture is offered by Fig. 3. The full line curves 
pass through the n-x pairs corresponding to An(x) values equal to 10 -1, 10 -3 and 
10 -5, respectively. The dotted line corresponds to n=d, for which An(x) values 
are given in Table 3. 
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Table 3 Dependence of A,ffx) upon x 

X lgAd(X) X lgAa~) x lgAd(X) 

2 0 10 -2.812 45 -16.664 

3 --0.176 15 ---4.349 50 -18.766 

4 -0.426 20 --6.333 60 -22.991 

5 -0.717 25 -8.360 70 -27.233 

6 -1.033 30 -10.413 80 -31.489 

7 -1.369 35 -12.484 90 -35.756 

8 -1.717 40 -14.569 100 --40.030 

Table 4 x va lues~r  which A,~)at~inscertainvalues 

n a .~ )  
10-* I0 -3 10 -5 

1 20 2000 200000 

2 7.746 77.460 774.60 

3 6.218 28.845 133.89 

4 5.886 18.612 58.857 

5 5.908 14.841 37.279 

6 6.078 13.094 28.210 

From Fig. 3 it is obvious that the asymptotic expansion is useless if x is 
small. For example, the error of Qn(x) will be higher than 0.1% if x<l 1.481, 
whatever n value would be chosen. On the other hand, for very high x values 
even the Ql(x)= 1 approach may be acceptable. The accuracy of the Qn(x) ap- 
proaches with n= 1, 2 and 3 are illustrated in Fig. 4. The dotted line indicates 
the correct value 

Qr(x) = x2eXp(x) (27) 

Qd(x) is practically equal to Qr(x) ifx>10, but for smaller x values considerable 
differences may arise. This is obvious from Fig. 4 where Qd(x) values are indi- 
cated for several low x values. 

By using the very rough approximation Q~(xm)= 1, relations (22) become 
[52, 53] 

{ e  -~ i f  n = 1 
1 - CZm = (28)  

n m- .  i f  n ~: 1 

Similarly,  with 
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__ 2RTm Q2(xm) = 1 -  2 =1 
Xm E 

one obtains [52, 54]: 

Iox  ,] if n=l 
- --1 (29) 

1 r / [  E + 2 (n_- 1)RTm] n-I 
l L nE if n ~ 1 

The actual dependence of am upon Xm is expressed by (22), with Q(xm)= Qr(xm). 
The value of the approaches (28) and (29) may be judged on the base of Fig. 5 
in which e.= is plotted vs. Xm for a first order reaction. 

xl 8 0  

60 

40 

20 

J 
I 

f 

~176 

~ 
~ ++ 

~176176176 
+~ 

~176 
.* 

.~ 

a*" 
+~ 

.+ 
,+ 

++ 
~ 

~176 
#l 

o~ 

low ~ 

20 40 60  8 0  

n 

Fig.  3 x vs. n plot corresponding to A.(x) equal to: a - 10-t; b - 10-3; e - 10 -5 

The above approaches have been used to calculate O~m values for the simu- 
lated TG curves of series 1 and 2. Results are presented in Table 5. As seen, the 
approach (29) is quite good. Since in our case 20<x=<60, this is not surprising. 
By comparing the values obtained on the basis of the Qf(xm) values with those 
presented in Table 2, a very good agreement is observed. 
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Fig. 4 Accuracy of the Q.(x) approaches, a - n = l ;  b - n=2; c - n = 3 .  Dotted line: Q , ( x ) .  

Circles: Qa(x) for x=3, 4, 5, 6, 7, 8, 9 

The maximum rate temperatures Tm observed at different heating rates may 
be used to derive kinetic parameters. One of the methods proposed [27] uses the 
rate Eq. (7) written for Tm. By taking logarithms, a rearrangement yields: 

lg~q dld-~l ( l m  - ff'm)-a] = l g z  
E 

2.303RTm - A + B T g  ~ (30) 

Consequently, the plot of the left hand side vs. 1/T,~ will be linear if the correct 
n value is chosen. One has IgZ=A and E=-2.303RB. Testing of this method on 
the TG curves of the series 1 yields for n= I an excellent linearity with a corre- 

Table 5 ~ values for the TG curves of series 1 and 2 

Se- Ap- q/K min -1 

ries proaeh 1 3 5 10 15 20 
(28) 0.6321 0.6321 0.6321 0.6321 0.6321 0.6321 
(29) 0.6100 0.6093 0.6089 0.6084 0.6081 0.6079 
(22) 0.6118 0.6112 0.6109 0.6105 0.6102 0.6101 
(28) 0.9226 0.7828 0.6954 0.6321 0.5829 0.5431 
(29) 0.9199 0.7728 0.6800 0.6082 0.5498 0.4999 
(22) 0.9200 0.7743 0.6810 0.6102 0.5532 0.5052 
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Fig.  5 M a x im um  rate conversions for n = 1, calculated by means of: a - approach  (28); 
b - approach (29); c - actual values, (22) and Qr(x,~) 

lation coefficient r>0.999999. The kinetic parameters derived are exactly the 
'input data', i.e. those used for the construction of the TG curves, viz. 
E=  120 kJ, lgZ= 12. 

Another possibility is offered by the relation (15), which may be written in 
the following logarithmic form: 

lg[T_~m2 ( 1 -  nm)l-n I E E (31) 
- = lgZ-  lg 2.303RTm 

Obviously, the plot of the left hand side vs. 1/Tm allows us to derive the kinetic 
parameters, viz. n as the value ensuring the best linearity of the plot, E from the 
slope of the straight line and lgZ from the ordinate intercept. Testing of the pro- 
cedure on the series I leads to the following results: 

for n= 1 r>0.999999; E= 119.84 kJ; lgZ= 11.98 

As seen, the agreement with the 'input data' is very good. 
Both procedures have been used to derive kinetic parameters from the TG 

curves of series 2. Results are presented in Table 6. It is obvious, that with both 
procedures an acceptable linearization can be performed, especially with 
Eq. (30). The kinetic parameters obtained differ very much from each other 
and they are very far from the arithmetical mean of the 'input data', given in 
Table 1. 
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Table 6 Kinetic parameters derived from series 2 of TG curves by using Tm values 

Eq. n E/kJ IgZ r 

(30) 0.27 52.63 3.89 0.993 

(31) 1.9 22.64 --0.10 0.977 

mean 0.85 140.8 14.41 

One may conclude, that the above two procedures of deriving kinetic pa- 
rameters from the maximum rate temperatures observed at different heating 
rates can give reliable results only if the kinetic parameters do not depend on 
heating rate, at least at am. In the case of the method based on Eq. (31), kinetic 
parameters must not depend on a either, since their independence of a has been 
postulated at the derivation of Eq. (7). 

Differential methods 

Procedures using Eq. (7) are called differential methods [32, 52]. It is worth 
mentioning that Eq. (30) is also a variant of Eq. (7), but the above given 
method is rather a second derivative method since implies Tm and cq~. One of 
the differential many curves methods [28] consists in measuring the reaction 
rate and temperature at the same conversion ai, by using three different heating 
rates, and deriving the kinetic parameters by solving the system of three equa- 
tions having the form 

,., = ~ exp - (1 - ai)" 

which may be written as 

l g Z -  E = g~ I~--~) l with i = 1 , 2 , 3  (32) 2.303RT. + n lg(1 - ai) 1 q, da 

At the first sight this procedure seems to be interesting, but the determinant of 
the system (32) is equal to zero 

D = -  EI~(1 - ai) 
2.303R il 1 1/T2 

1 1/T3 
(33) 

Therefore, deriving of lgZ, E and n values from T-daldT pairs, obtained for 
a=const ,  is not possible. Actually, at a=const, only E and lg[Z(1-a)"] can be 
obtained. But for this, from mathematical point of view, the use of only two 
heating rates would be sufficient. 
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Since in the case of deriving n parameters from n experimental points results 
are very much affected by experimental errors, we preferred to use a lineariza- 
tion procedure [291. Eq. (7) may be written as 

lg do~ = Ig[Z(1 - cz) n] 2.303RT - a + B T  -l  (34) 

For cx=const, the first term of the right hand side is constant, if n, Z and E are 
thought to be independent of q. Therefore, the plot of the left hand side vs. T ~ 

must give a straight line, irrespective of n. E is obtained from the slope B of the 
straight line and A =lg[Z(1--~)n]. This procedure has been tested on TG curves 
of series I for different o~ values. In all cases an excellent linearization was ob- 
tained with r>0.999999 and the slope of the straight line gave exactly 
E =  120 kJ. The A value depends on ct, but by taking n= 1, one obtains lgZ= 12 
for every ct. 

Table 7 Kinetic parameters derived for series 2 by means of Eq.(34) 

C~ EtkJ lg[Z(1-r r lgZ n 

0.1 124.5 12.27 0.959 18.82 95.8 

0.2 83.9 7.34 0.939 13.55 63.0 

0.3 65.2 5.12 0.922 10.47 43.9 

0.4 50.9 3.45 0.907 8.28 30.3 

0.5 40.3 2.21 0.882 6.58 19.8 

0.6 31.8 1.22 0.839 5.20 11.2 

0.7 21.9 0.04 0.767 4.02 3.9 

0.8 10.7 -1.29 0.568 3.01 -2.4 

0.9 -3.9 -3.08 0~329 2.11 -0.8 

By applying the same procedure with TG curves of series 2, the results pre- 
sented in Table 7 are obtained. Obviously, for low cz values an acceptable 
linearity was obtained, exhibiting the rapid decrease of E with increasing cz. At 
higher ct values the linearity is very poor and one obtains even negative 'activa- 
tion energy' values. With increasing ot the product Z(1-cz) n also decreases 
rapidly, suggesting a dependence of Z on cx. Since at cx = const, it is impossible 
to obtain Z by means of Eq. (34), the following procedure has been used. From 
the lg[Z(1-cx)*] values given in Table 7 for two 'neighbouring' cx values, e.g. for 
0.4 and 0.5, lgZ and n values were calculated and they were assigned to their 
arithmetical mean 0.45. By constructing l g Z v s ,  cx and n vs. cx curves, the values 
given in Table 7 have been obtained by means of graphical interpolation or ex- 
trapolation (in the case of the extreme cx values). 
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Integral methods 

Integral methods use Eq. (8) for deriving kinetic parameters. One of the in- 
tegral many curves methods is a linearization procedure [32], based on the 
following approach of the exponential integral: 

- lgp(x) ~ 2.315 + 0.4567x (35) 

which gives errors less than 0.2 if 14<x<71. As mentioned above, in the case of 
the TG curves used in this paper 20<x<60, i.e. applying of the approach (35) is 
completely reasonable. 

By combining Eqs (8) and (35) one obtains 

1ZE E lgq = g-~--- lgg(ot)- 2 .315-  0.4567 ~-~ = A + B T  -~ (36) 

If ot=const, and Z, E and n are thought to be independent of q, (36) will be the 
equation of a straight line, allowing us to derive the activation energy E. This 
method has been tested on TG curves of the series I for different ot values. In 
all cases an excellent linearity was obtained, corresponding to r>0.999999. The 
E values derived were very near to the 'input data', viz. 120.5 kJ for or=0.1 
and 121.0 kJ for or=0.9, showing a systematic increase with increasing or. This 
slight error is due to the approximate validity of (35). 

By applying the same method with TG curves of series 2, E values vary very 
much with or, as seen from Table 8. Linearity of the lgq vs. 1/Tplots was quite 
good. 

Table 8 Kinetic parameters derived for series 2by  means of Eq.(36) for ct=const. 

ot EIkJ A r lgZ n 

0.1 186.7 23.14 0.987 27.0 180 

0.2 135.4 16.17 0.977 20.2 82 

0.3 114.2 13.30 0.972 14.9 33 

0.4 101.5 11.59 0.967 13.0 21 

0.5 91.4 10.24 0.964 11.3 14 

0.6 82.6 9.08 0.963 10.1 10.1 

0.7 75.0 8.08 0.960 9.0 7.45 

0.8 67.3 7.08 0.957 7.9 5.40 

0.9 58.2 5.92 0.040 7.0 4.08 

As far as the igZ and n values are concerned, these cannot be derived from 
experimental data for o~=const. For the determination of n the graphical plot of 
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lgg(o 0 vs. lgq has been proposed [32] for T= const. Equation (36) may be writ- 
ten as 

lgg(a)=lg  1 [ 1 _ ( 1 _ o ~ )  1-n]=lgZE 1 - n --R- - 2.315 - 0.4567 ~T - lgq = 

= A - l g q  if n ~ l  (37) 

and the above mentioned plot yields a straight line if for the calculation of g(o~) 
the correct n value was used and if n, E and lgZ values do not depend either on 
q or on a. The slope of the straight line will be equal to -1. 

Testing of this procedure on TG curves of series 1 showed an excellent 
linearity (r>0.9999) if g(a) was calculated for n= 1 and the slope of the lgg(a) 
vs. lgq plot was e.g. equal to -0.98 by using tz values corresponding to 
T= 450 K. 

Table 9 n values de~ved for series 2by means of Eq.(36) for T=eonst. 

T na ra n, rm Numb. points 

420 7.27 0.973 -5.48 0.99952 6 

425 1.91 0.986 -1.44 0.99976 6 

430 1.53 0.997 -1.53 0.99990 5 

435 0.10 0.999 -0.59 0.99998 5 

440 -0.01 0.000 -0.09 0.99999 5 

445 -0.18 0.999 0.33 0.99999 4 

450 -0.20 0.996 0.47 0.99999 4 

455 -0.34 0.989 0.54 0.99999 4 

460 -0.56 0.998 0.57 0.99999 3 

With series 2 the same procedure exhibited a dependence of n on T. Gener- 
ally, the n value ensuring the best linearity did not give -1 for the slope of the 
straight line. This is why two n values have been derived and given in Table 9, 
viz. the n value for which the slope of the plot is equal to -1 (denoted by nB), 
and the n value ensuring the maximum correlation coefficient r=rm (this one is 
denoted by nr). Both nB and nr values are presented in Table 9, together with the 
corresponding correlation coefficients rB and rm, respectively. The last column 
indicates the number of 'experimental' points processed. It is obvious that both 
na and n~ values vary very much with increasing T, viz. the former decreases 
and the latter one increases. Consequently, the apparent kinetic parameters do 
vary not only with T, but also with a. 

In order to derive n and lgZ for different a=const,  values, let us consider 
the constant A of Eq. (36) for al and for a2=a l+0 .1  by presuming n~l: 
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A l = l g Z + l g E I - 2 . 3 1 5 - 1 g  I II-(l-czl)1-~ 1 
R 

A2 = lgZ + lg E_.z _ 2.315 - lg 1 [ 1 - (1 - o~2) 1-'] 
R 1 - n  

(38) 

Let us presume as a first approach, that both lgZ and n are practically constant 
in such a narrow ct interval. By eliminating IgZ from the system (38), one ob- 
tains 

1 - (1 - oq) 1-" = exp[A2 - A1 + lg(Ei/E~)] (39) 
1 - (1 - o @ - *  

The right hand side of Eq. (39) is easily calculated from the first two columns 
of Table 8. Thus, an n value may be derived by means of Eq. (39), which may 
be assigned to o~=oq+0.05. The corresponding lgZ value is calculated by 
means of Eq. (38). Eventually, plots ofn vs. ~ and l gZvs ,  c~, allows us to obtain 
graphically n and lgZ values, respectively, for the c~ values indicated in Table 8. 
Results are presented in the last two columns of Table 8. 

Discussion and conclusions 

Testing of four many curves methods, based on Eqs (30), (31), (34) and 
(36), respectively, shows that in the case of ideal TG curves, corresponding to 
kinetic parameters n, Z and E, which do not depend on heating rate (series 1), 
these methods allow us to derive kinetic parameters exactly equal to the 'input' 
ones. 
�9 In the case of theoretical TG curves, more close to the real ones, exhibiting 

a dependence of kinetic parameters on heating rate (series 2), the kinetic pa- 
rameters derived by means of the same methods, do not agree with each other, 
as seen from Tables 6-8. Moreover, with Eqs (33) and (36) one obtains that n, 
Z and E depend very much on ~t. From mathematical point of view it is not sur- 
prising that by constructing theoretical TG curves with n, Z and E parameters 
depending on q and independent of ct, methods based on the hypothesis, that 
they are independent of q, lead to their dependence on {x. Since experimental 
results show that modification of the heating rate modifies the shape of the TG 
curves, it seems to be more reasonable to presume the dependence of kinetic pa- 
rameters on heating rate, than their dependence on conversion. 

The mathematical correctness of the four methods tested is not of the same 
degree. All of them are based on the hypothesis, that n, E and Z do not depend 
on q. In the case of Eq. (34) no further presumptions are needed. Thus, in some 
respect this method is equivalent with the single curve methods, which postulate 
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that n, E and Z do not depend on ct. The other 3 methods imply one more hy- 
pothesis, viz. 

Equation (30) is valid if n, E and Z have the same value at O~m, although the 
latter depends on q. 

Equation (31) is obtained by performing a derivation in the assumption, that 
n, E and Z do not depend on ~t either. 

Equation (36) is based on an integration performed with the same condition 
that n, E and Z do not depend on or, and even this method 'reveals' the most 
clearly the dependence on ct of the kinetic parameters. In this respect it is inter- 
esting to compare the correlation coefficients given in Tables 7 and 8. The 
'correct' Eq. (34) ensures a very poor linearity, and the 'erroneous' Eq. (36) 
gives a good one. 

Table 10 lsokinetie parameters derived from E and Z values presented in Tables 7 and 8 

Tables lgki /~/K r 

7 1.508 380.09 0.9946 

8 -3.126 320.97 0.9958 

Table 11 Rate constants and conversions at the apparent isokinetie temperatures 

q/K rain -I 

1 3 5 10 15 20 

lgk3so.o9 -5.904 -5.489 -5.074 -4.660 -4.383 -4.175 

lgct38o,o9 -3.387 -3.383 -3.113 -2.906 -2.731 -2.581 

1gk32o.97 -11.222 -10.047 -8.872 -7.698 --6.915 -6.328 

lgct32o.97 --8.854 --8.092 -7.056 -6.089 -5.406 -4.875 

Since both E and lgZ seem to decrease with increasing o~, the validity of an 
(11) type linear compensation law may be tested. By using the kinetic parame- 
ters given in Tables 7 and 8, a good linearity was observed, allowing us to 
derive the isokinetic parameters ki and Ti, accordingly to Eq. (12). Results are 
presented in Table 10. It is obvious, that the linearity is very good. But what 
kind of 'compensation' occurs here? In the case of kinetic compensation effect 
some modifications in the structure of the reagent, in the composition of the 
catalyst, or in working conditions are responsible for the variation of activation 
parameters. In our case only the conversion ct varies and the effect is a com- 
pletely apparent one. It is indeed more correct to take it for a 'mathematical' 
compensation effect as in [37]. On the other hand, no real rate constant takes 
the ki value at the isokinetic temperature. The real rate constants in the case of 
TG curves of series 2, at the T~ values given in Table 10, are presented in Ta- 
ble 11, together with the corresponding ot values. As seen, the real rate 
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constants are much less than those indicated for Tj in Table 10 and they do not 
indicate an isokinetic character at all, since their value varies with the heating 
rate, with more than an order of magnitude at 380.09 K and almost with 5 or- 
ders of magnitudes at 320.97 K. The corresponding a values are so small, that 
we preferred to give their logarithms. It is interesting to compare them with the 
ot values given in Table 1 for the real isokinetic temperature/~=423 K. 

On the basis of the above results we conclude that although the physical 
meaning of the apparent kinetic parameters n, E and Z, derived by means of the 
single curve methods it not clear, generally they are able to give a good descrip- 
tion at least of a single TG curve and their dependence on working conditions 

�9 might give useful pieces of information concerning the pyrolysis process. On 
the contrary, the many curves methods are based on hypotheses which are in 
disagreement with experimental data and the parameters derived by means of 
these methods depend very much on the calculation procedure used and they do 
not allow us even to describe the TG curves. They give some parameters, which 
are much more unrealistic than those obtained with single curve methods (e.g. 
negative 'activation energy', reaction order n>100) and which cannot be corre- 
lated with anything. In our view the use of many curves methods has no reason. 
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